Carbohydrates (Climate series)

Carbon is a hero.  It is great stuff.  Here it is in the short and sweet.  While this is too simple for college bio-chemistry, you can understand global warming lies a little easier once you get this stuff.  Living things take carbon out of the air, dead things give it back.  (It’s not entirely that simple, though, because living things like bacteria and fungus give it back from the dead things.)

Carbohydrates (actually, hydrated carbons) are the foundation of all plant materials, made up entirely of carbon (mostly from carbon dioxide) and water.  Plants and trees grab CO2 from the air and water from the soil to form carbohydrates.  When carbohydrates respire (breath, or mix with oxygen) the process releases carbon dioxide and water.  Glucose, for instance, the simplest carbo- breaks down like this: C6H12O6 + 6O2  -->  6CO2 + 6H2O.  It’s just a reverse situation of growing.  Exactly the same thing happens when carbohydrates burn: carbon dioxide and water.

CO2 is not a poison, it is not toxic, won’t give you lung disease or kill plants or other animals.  Like water, too much causes drowning, not “water poisoning.” Similarly, too much carbon dioxide causes asphyxiation, not “CO2 poisoning.”

The only significant (and certainly the easiest) way to reduce CO2 levels in the atmosphere is to “grow them out.”  Plants sequester CO2.  Sometimes those plants are in the water.  The oceans are great and massive places to grow seaweeds and algae, so you might hear discussion of “sequestering CO2 in the oceans.”  That is what “sequestering” means in those examples: growing carbohydrates in salt water and foam that drop and mix with other stuff (like Calcium, sodium, and aluminum) to make coal, or oil, or rocks.

Low carb dieting, though, will not harm the environment.  Fats come from carbon, oxygen and hydrogen, just like carbs.  The difference is where you put the hydrogen. Carbo-(n)-hydrates (OH) are basic. Fats (H) are acids.  Put them together, H+OH --> H2O.  Protein are just fats (acids) and carbs (bases) with nitrogen attached.  Sometimes sulfur, too — that’s why some rotting proteins smell like farts while the bacteria eat them.

If you followed the 362 words above, you understand the basics of CO2 and global warming.  If you don’t understand that relationship, stay tuned. There might not be one.  But we do need trees.

Please follow and like us:
error

Compost, Not Labor or Money

As a huge fan and practitioner of composting, it might sound strange to hear me say, “it isn’t necessary.”  What I mean is, “our participation is optional.”  And what I mean by that is, “if you spend much time or money, you waste your resources.”

Compost happens.

Once you put carbon containing stuff with air and water, it composts.  It will happen in your gutters, in the landfill, on your lawn or in your garden.  Compost “recipes” can speed things up by adding nitrogen mostly, but newspaper, cardboard, wood chips, fence posts and tree trunks all compost just fine if you aren’t in a hurry.  It just might take a while.

There is a composting method used in Scandinavian countries called Hugelskultur (with an umlaut over the first u) where trees are piled up and buried in leaves and soil in the fall.  The mixture is planted in the spring and for all following seasons while the trees rot and bacteria dig out nutrients to feed to the mounded gardens.

One highly effective compost method is to spread your organic stuff all over the ground in the fall and let winter start the process of mixing it into the bacteria and fungi rich soil, with the help of rooting animals.  By spring, earthworms will eat it, and it can be planted.

The same principle holds for mulch.  Spreading up to a foot of wood chips, bark, straw, hay, grass clippings, yard waste, leaves (especially all of the above together!) around your plants while they grow or on your garden over winter might be the best way to release the food and develop your soil.

If you have the room and resources, you can build big piles of composting stuff and gather the heat for your house, shop, or garage.  A really good square yard of compost gives off a steady 1000 btu of heat per hour all winter long while it prepares your garden soil for spring.

Please follow and like us:
error

Joys V, Compost biochemistry

Chemistry and biology, in the easiest forms.  As promised, this will be suitable for high school dropouts, or even early mornings with the first cup of coffee. 

Carbon is life.  If a substance includes carbon it is called “organic.”  If there is no carbon, the substance is inorganic.  Organic involves organisms or the products of their life processes.  Carbon dioxide, CO2, is a product of life processes.  It is what most living things breath out.

Plants and animals release carbon as CO2, but we don’t call it breathing when a plant does it because they don’t have lungs.  Every bacterium, dog, fish, tree, pansy and bird releases lots of CO2 into the atmosphere. 

Trees and plants also release O2 into the air.  Two separate processes.  For living, they “breath out” CO2, but for growing, they take carbon from the air and release O2.  As a young tree grows it provides oxygen.  When it matures the balance means no net CO2 or O2.  When it gets old, and ultimately dies, all of the carbon it stored goes back to the air it came from as it rots.  It’s a cycle.

ROT is a misleading term, left over from a few hundred years ago. Rotting sounds like something a dead tree does, or a fallen hero, but dead trees do nothing.  They don’t even fall down without help.  What happens to trees is that they get eaten, reused, recycled.  Everything organic gets eaten.  Always, always, something out there wants the carbon and the nitrogen stored in something else.  That process of being eaten results in what we call “rot.”  That ugly name is the muscle and backbone of all life on earth.  It is composting, and God and the Bible spoke of these things long before Leeuwenhoek discovered “animalcules” in his mouth.

“Earth to earth, ashes to ashes, dust to dust, in sure and certain hope of the resurrection.”  Composting is the very natural process of restoring life on earth.  As corrupt and fallible as it is, we are all part of the never-ending cycle.

With that understanding, it’s time to move on to some dangers and challenges of agriculture.  It never needs to be a crisis.

Please follow and like us:
error

Joys of, IV – Ratios

Compost needs a few things.  Nature provides all of them: carbon and nitrogen, moisture, oxygen, warmth, and microorganisms.  Compost also enjoys movement, like being stirred or tossed periodically.

Articles and books focus heavily on the C/N ratio, or carbon to nitrogen.  Yes, ideally you start with 20 – 40 parts carbon to 1 part nitrogen, but while that ratio speeds up the process, composting takes place even in a stack of damp cardboard at 500:1.  It just may take a few years. Mix in some coffee grounds, vegetable trimmings, or grass to that cardboard and speed things up.

To get close to the ideal, just mix up stuff from trees (bark, leaves, wood chips, sawdust, cardboard and paper, twigs, etc.) and stuff from plants (vegetables, grass, flowers, fruit remains and peels, stalks, vines, weeds) and mostly vegetarian animal poop (horses, rabbits, cows, sheep, chickens, turkeys, etc.; birds eat lots of rodents, small fish, insects, voles and moles, but process food differently so its okay for composting.)  If you get close to 1/2 and 1/2, great.

Too much nitrogen is rare, but if it does happen you will smell ammonia.  The cure is to add more carbon.

In fact, smell is a great tool for the composter.  If it smells like rotten eggs or poop, the compost is too wet and packed down.  It lacks air.  It needs “fluff.”  Go easy on the water for a while, and add straw or twigs, wood chips, bark, or cardboard.

The only real “compost don’t” is meat, or meat-eater poop.  Bad bacteria is the main reason.  Unwanted animals is the other.  E coli and other nasties come with the gut stuff.  It simply is not worth the risk.  Period.  Don’t do it.

Unless you are in a big hurry, composting what you have works just fine, because no matter what your ratios are, the end product has close to 10:1 carbon to nitrogen.  That’s exactly what your garden wants!  How can that be?  The result of the compost is the result of biology and chemistry  Even if you failed chemistry and biology with honors, the next lesson will make sense.  I promise.

 

Please follow and like us:
error

Joys of, Part II

Now we get to meet the residents of our soils.  You might be shocked to learn there can be billions of them in a handful of good garden loam.  The residents include the worms and bugs you can see, plus more worms and bugs you cannot see with the naked eye.  There are very few of those, however, numbering in the tens of thousands in your little garden.  Next come the fungi, bacteria, and viruses.  Thousands of different kinds, millions each of most, billions of some.

Some work against each other, but the level of cooperation at the microscopic level amazes the people who get to watch on electron microscopes.  All sorts of invisible critters feed one another, trade water and minerals for sugars and other foods.  They provide transportation, purification, waste disposal, and negotiate contracts between grouchy neighbors.  They work together to keep enemies in check, or even to make friends of the enemies.  Or eat them.  And they also tend to the plants in the garden.

So many little critters live in the soil it can be overwhelming to try and sort them out. . . especially since we can’t see them.  But we don’t need to see or hear them to know they’re doing their jobs and staying in balance.  Figuring out the microbes is as simple as watching the garden.

In fact, plants are nearly helpless, even somewhat pathetic without the various microbes that feed and water them, allow them to breath, moderate the nutrients and nurse them along.  I might even suggest that tending to the microbes is the most critical critical aspect of gardening — especially over a long time and many seasons.

Like a pet, soil needs good food and water, adequate shelter, exercise, some sunshine, interaction with others, and plenty of fresh air.

This series may get deeper and more involved, but the next article simply considers the easiest and most effective ways to keep your microbes and worms happy so you can enjoy great soil, a beautiful garden, and good food for your table.  It will also address the differences between plants and trees, and ways to improve your soil for either one.

Please follow and like us:
error